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This document presents additional details on the archi-
tecture of the Super-Resolution (SR) module and on the
training implementation of AMRSR (Section 1). A pseu-
docode of AMRSR is then proposed with a legend sum-
marizing the notation used in the main paper (Section 2) .
Ablation study results are added by training AMRSR with
all the losses (visual-oriented) for different number of refer-
ences and for different configurations of the attention map-
ping (Section 3). Another ablation study is conducted by
changing the number of parts that the LR input and the ref-
erence images are divided into, with a focus also on the
inference time (Section 3). More visual comparisons be-
tween AMRSR and the other approaches cited in the ex-
perimental results of the original paper are illustrated (Sec-
tion 4). Further results of the comparison between AMRSR
and CIMR [1] are finally presented (Section 5).

1. Super-resolution module and training imple-

mentation

AMRSR aims to super-resolve the low-resolution (LR) in-
put by concatenating its feature vector with the feature vec-
tors created by the hierarchical attention-based similarity
mapping. To this purpose, a generative adversarial network
(GAN) is applied with a discriminator that is the same as
the one used in [16]. After an initial feature extraction of
the input image with a residual block, a generator, whose
layers are listed in Table 1, retrieves the output image.
The multi-scale approach that creates the feature vectors in
each level of the hierarchy of AMRSR adopts three layers
of the VGG-19 network [13]: relu1 1, relu2 1, and relu3 1.
This last layer is used to perform the convolutional opera-
tion that estimates the similarities between the feature vec-
tors. The computed correspondences are then projected to
the other two layers to create the related vectors.
The network is pre-trained with the reconstruction loss for
5 epochs and then trained for 100 epochs with the other
losses. The l2 versions are trained for 100 epochs with
the reconstruction loss. Adam optimizer is adopted with
a learning rate of 1e-4. The datasets have been augmented

Id Network Layers

0 ImgFeature=Residual Blocks(Input)
1 Concat: ImgFeature, O3

2 Conv, LeakyReLU
3-18 Residual Blocks (Conv,ReLu,Conv)
19 ImgFeature + output18
20 Conv, PixelShuffle(2x), LeakyReLU
21 Concat:output20,O2

22 Conv, LeakyReLU
23-30 Residual Blocks (Conv,ReLu,Conv)

31 output20+output30
32 Conv, PixelShuffle(2x), LeakyReLU
33 Concat:output32,O1

34 Conv, LeakyReLU
35-38 Residual Blocks (Conv,ReLu,Conv)

39 output32+output38
40 Conv, PixelShuffle(2x), LeakyReLU

Table 1: Architecture of AMRSR generator.
Symbol Meaning

ILR Low resolution input image
ISR Super resolved image
Iref Reference image

m = 1..NM Number of reference images
r = 1..NR Number of parts a reference is divided into
i = 1..NI Number of parts the input is divided into
l = 1..NL Number of levels of the hierarchy
c = 1..NC Number of parts the input feature vector is divided into
�
c(ILR) Set of NC subvectors of the input feature

�
r(Imref ) Set of features of the NR parts of the NM references
s
l
k Similarity map for layer l. k = c, r,m

O
l
ref Output map of level l containing reference features
P Patches of patch-match approach
W Set of output weights

Table 2: Legend of AMRSR notation.

by flipping and rotating the data. The weights for L1, Lper,
Ladv , and Ltex are 1, 1e-4, 1e-6, and 1e-4, respectively.

2. AMRSR legend and algorithm

Table 2 presents a legend with the notations used in Section
3 of the main paper.



Algorithm 1 represents the pseudocode of AMRSR algo-
rithm in the case that NM > 1 and NR > 1. The cases
when NM = 1 or NR = 1 can be represented with a simple
modification of the pseudocode. If NM = 1 and NR = 1,
only the “INPUTATT” function is executed. The function
INPUTATT is defined by Equation 1 and 2 from the main
paper, while REFATT is defined by Equation 1 and 3.

Algorithm 1 AMRSR ALGORITHM
1: Divide NM reference images in NR parts
2: Extract feature vectors of reference image parts

�
r(Imref )

3: Extract feature vectors of LR input �(ILR)
4: Divide �(ILR) into NC subvectors ! {�c(ILR)}NC

c=1

5: for m = 1:NM (for all the references) do

6: for r=1:NR (for all parts of a reference) do

7: O
1,m,r
ref =INPUTATT(�c(ILR),�r(Imref ), c)

8: end for

9: O
2,m
ref =REFATT(�c(ILR), O

1,m,r
ref , NC , r)

10: Wm = max(�c(ILR) ·O2,m
ref )

11: end for

12: O = O
3
ref =REFATT(�c(ILR), O

2,m
ref , NC ,m)

13: W (x, y) = Wm⇤(x, y)
14: Image Super-resolution by leveraging O and W

15: function INPUTATT(X,Y, k)
16: sk = Xk ⇤ Pk(Y )

||Pk(Y )||
17: M(x, y) = Pk⇤(Y )(x, y)
18: where k

⇤ = argmaxk sk(x, y)
19: return M

20: end function

21: function REFATT(X,Y,NC , k)
22: for j = 1 : NC do

23: sk = Xj ⇤ P (Yk[j])
||P (Yk[j])||

24: M [j](x, y) = Yk⇤ [j](x, y)
25: where k

⇤ = argmaxk sk(x, y)
26: end for

27: return M

28: end function

3. Ablation studies: further evaluations

Nr. references CU4REF Sun80 GEMAP HUMAP
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d 1 Reference 26.77/.7882 30.15/.8162 35.64/.9106 45.38/.9760
2 References 27.30/.8087 30.27/.8205 35.65/.9108 45.45/.9763
4 References 27.49/.8145 30.41/.8257 35.80/.9122 45.56/.9771

8 References – – 35.87/.9145 45.50/.9767
2nd best 26.42/.7738 29.72/.7984 34.78/.8963 45.03/.9743

Table 3: Visual-oriented quantitative results of AMRSR obtained
by changing the number of references.

Number of reference images and attention mapping:

Table 5 and Table 6 of the main paper present the PSNR

Config. CU4REF Sun80 GEMAP HUMAP
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d No attention 27.05/.8026 29.72/.7997 35.02/.9003 45.25/.9746
Ref. attention 26.78/.7909 29.84/.8022 35.11/.9003 45.28/.9753
Both attention 26.52/.7795 29.73/.7982 35.16/.9015 45.35/.9754

AMRSR 27.49/.8145 30.41/.8257 35.80/.9122 45.56/.9771

Table 4: Visual-oriented quantitative results obtained by dividing
into subvectors the feature vectors of references (ref), of both ref-
erences and input (both) or none (no).

and SSIM values computed by respectively changing the
number of references and modifying the attention mapping
mechanism of AMRSR trained with only the reconstruction
loss (PSNR-oriented). The visual-oriented results (trained
with all the losses) are shown in Table 3 for the first abla-
tion study and in Table 4 for the second, confirming that the
performance improves with more references and when the
attention mapping is executed on the LR input vector.

Algorithms CU4REF Sun80 GEMAP HUMAP

AMRSR 1ref 20.03 113.36 84.28 44.05
AMRSR 2ref 41.78 204.38 104.85 84.24
AMRSR 8ref – – 418.82 316.04

NR = 1 46.73 80.62 126.91 147.26
NR = 4 137.41 154.03 265.73 161.27
NR = 16 270.76 391.63 265.14 159.63
cut 1ref – – 21.95 19.08
cut 4ref – – 111.65 98.95

SRNTT [16] 20.87 26.93 (19.37) (15.37)
TTSR [12] 17.03 17.60 (17.13) (10.31)
MASA [5] 5.36 5.41 (9.62) (7.66)

Table 5: Processing time (in seconds) during inference for the al-
gorithms of Table 7 of the main paper.

Part-based mechanism and GPU memory usage: in
the main paper, we proved that our approach required less
GPU memory during inference compared to other RefSR
approaches without deteriorating its performances. We
analysed the results when references are divided into parts.
Table 6 shows the PSNR and SSIM values obtained when
also the LR input is divided into parts (NI = 1, 4, 16). Ta-
ble 7 shows the GPU memory consumption and the process-
ing time for the same configurations. The GPU memory
usage depends on the size of the LR input and of the refer-
ences. The size of the LR inputs for the different datasets
are: (125x125) for CU4REF, (256x232) for Sun80, (64x64)
for HUMAP and (64x64) for GEMAP. If the LR input is
divided into parts, the part-based mechanism significantly
reduces the consumption of GPU when it is applied to in-
puts of higher size. However, it slightly worsens the perfor-
mances and increases the processing time. Table 5 shows
the inference time (in seconds) for the algorithms presented
in Table 7 of the main paper. AMRSR is generally slower
than the other approaches: the runtime has a sub-linear in-
crease with increasing number and size of reference images.
The time of AMRSR is similar to the other RefSR methods
if a single reference is used. This is the main limitation of
our work and it will be addressed in future work. We did
not evaluate Cross-Net [17] and SSEN [8] because the ref-
erence images are resized to be equal to the LR input in their
implementation.



Configurations
Visual-Oriented PSNR-Oriented

CU4REF Sun80 GEMAP HUMAP CU4REF Sun80 GEMAP HUMAP
NI = 1, NR = 1 27.49/.8145 30.14/.8170 35.58/.9077 45.55/.9771 28.32/.8394 30.84/.8393 36.60/.9221 46.81/.9811
NI = 1, NR = 4 27.17/.8073 30.30/.8217 35.63/.9106 45.45/.9762 28.00/.8358 30.87/.8415 36.65/.9232 46.85/.9814
NI = 1, NR = 16 27.08/.8040 30.42/.8263 35.80/.9122 45.56/.9771 27.97/.8341 30.95/.8438 36.82/.9248 46.86/.9814

NI = 4, NR = 1 26.44/.7793 29.86/.8082 35.49/.9059 45.39/.9761 27.28/.8108 30.62/.8329 36.57/.9219 46.81/.9812
NI = 4, NR = 4 26.43/.7776 30.04/.8131 35.50/.9071 45.34/.9754 27.22/.8096 30.61/.8332 36.59/.9225 46.82/.9812
NI = 4, NR = 16 26.38/.7749 30.17/.8167 35.65/.9111 45.38/.9762 27.16/.8068 30.69/.8360 36.69/.9236 46.80/.9811
NI = 16, NR = 1 25.58/.7405 29.76/.8024 35.42/.9055 45.40/.9760 26.45/.7809 30.51/.8292 36.53/.9215 46.81/.9810
NI = 16, NR = 4 25.63/.7441 29.89/.8075 35.46/.9061 45.24/.9753 26.40/.7830 30.48/.8284 36.54/.9217 46.74/.9808
NI = 16, NR = 16 25.62/.7415 29.90/.8082 35.57/.9101 45.33/.9760 26.36/.7789 30.47/.8299 36.60/.9229 46.74/.9808

Table 6: PSNR/SSIM values of different configurations of AMRSR. NI is the number of parts which the LR input is divided into while
NR is the number of parts which the reference images are divided into. NM = 4 reference images used.

Configurations
CU4REF Sun80 GEMAP HUMAP

GPU Time GPU Time GPU Time GPU Time
NI = 1, NR = 1 1.36 46.73 3.96 80.62 40.15 126.91 29.60 147.26

NI = 1, NR = 4 1.21 137.41 3.23 154.03 28.49 265.73 20.98 161.27
NI = 1, NR = 16 1.22 270.76 3.24 391.63 15.69 265.14 11.59 159.63
NI = 4, NR = 1 1.00 65.74 3.33 112.81 39.54 240.00 26.93 275.27
NI = 4, NR = 4 0.80 77.46 2.06 155.39 28.18 545.41 20.73 310.19
NI = 4, NR = 16 0.80 168.98 2.08 372.73 15.53 483.30 11.44 430.83
NI = 16, NR = 1 0.90 56.19 3.17 129.62 39.29 252.81 26.77 380.07
NI = 16, NR = 4 0.72 76.85 1.79 204.95 28.06 1072.46 20.63 635.21
NI = 16, NR = 16 0.73 168.70 1.80 470.91 15.47 968.72 11.39 716.55

Table 7: GPU memory usage (GB) and processing time (in sec-
onds) of different configurations of AMRSR. NI is the number of
parts which the LR input is divided into while NR is the number
of parts which the reference images are divided into. NM = 4
reference images used.

4. Visual comparisons with other approaches

We conduct a qualitative evaluation of the SR outputs of
the methods cited in Section 5 of the main paper, namely:
the PSNR-oriented networks EDSR [4], MDSR [4], RRDB-
Net [11], SRResNet [2], RCAN [15], NHR [3], NLR [3],
CSNLN [6], MAFFSRN [7]; the visual-oriented GANs
SRGAN [2], ESRGAN [11], RSRGAN [14] and the
RefSR approaches CrossNet [17], SSEN [12], SRNTT [16],
TTSR [12] and MASA [5]. More specifically, Figures 1, 2,
3, 4 shows examples from CU4REF dataset, Figures 5, 6,
7 from Sun80, Figures 8, 9 illustrate SR texture map from
GEMAP while Figures 10, 11 from HUMAP. The presented
examples prove the superiority of AMRSR among other ap-
proaches. Its SR outputs are less blurry than the outputs of
PSNR-oriented methods and they have richer and sharper
details than the ones of the visual-oriented and RefSR ap-
proaches.

5. Further comparisons with CIMR [1]

In the main paper, we evaluate our approach with the
same training and test settings adopted by CIMR [1], the
other multi-reference super-resolution network, in the
case that multiple references are exploited. CIMR was
further tested on content-similar references using a single
reference image with 4 different levels of similarity to the
LR input. We evaluate AMRSR with this setting by using
a single reference taken from four similarity level groups
(from L1 to L4) of CUFED5 [16] dataset. The quantitative
results presented in Table 8 show that AMRSR outperforms

CIMR also when only a single reference is used, for all the
considered levels of similarity.
Table 9 compared different configurations of the part-based
mechanism when AMRSR is trained and tested with the
same datasets as CIMR [1] in the case of multiple refer-
ences. Specifically, NM references, taken from the Outdoor
Scene (OST) dataset [10], are randomly associated to
each LR input image. The maximum size of the reference
images is (984x736). The highest figures of PSNR and
SSIM are obtained when the reference images are divided
into 16 parts, confirming that the part-based mechanism
improves the performances if high resolution references
are exploited. Figure 12 illustrates visual examples of
SRNTT [16], CIMR and AMRSR applied to Sun80 [9]
dataset in the case of multiple references. SRNTT and
CIMR images are taken from [1]. The higher qual-
ity of AMRSR outputs proves its qualitative superiority.

Algorithms L1 L2 L3 L4

CIMR-l2 27.32/.805 27.05/.799 26.92/.796 26.86/.794
AMRSR-l2 28.38/.844 27.87/.825 27.76/.821 27.59/.817

CIMR [1] 26.50/.786 26.47/.784 26.45/.784 26.44/.784
AMRSR 27.32/.808 27.01/.795 26.95/.793 26.85/.791

Table 8: Quantitative comparison between AMRSR and CIMR ex-
ploiting single reference images with different levels of similarity
to the LR inputs. The results of CIMR are taken from [1].

Config. NM
Visual Oriented PSNR Oriented

CUFED5 Sun80 CUFED5 Sun80

NI = 1
NR = 1

4 26.86/.7936 30.49/.8255 27.48/.7974 30.98/.8420
8 26.90/.7950 30.56/.8273 27.55/.7992 31.06/.8443
16 26.95/.7950 30.60/.8288 27.62/.7994 31.11/.8456
32 26.97/.7959 30.66/.8303 27.68/.8208 31.17/.8470
64 27.05/.7979 30.72/.8321 27.71/.8221 31.22/.8483

NI = 1
NR = 4

4 26.84/.7941 30.52/.8281 27.54/.8192 31.04/.8450
8 26.92/.7956 30.63/.8311 27.60/.8200 31.18/.8489
16 26.95/.7971 30.67/.8326 27.65/.8222 31.24/.8514
32 26.99/.7982 30.74/.8341 27.68/.8237 31.29/.8513
64 27.07/.7999 30.80/.8356 27.70/.8230 31.30/.8508

NI = 1
NR = 16

4 26.87/.7957 30.53/.8293 27.57/.8207 31.10/.8477
8 26.92/.7963 30.64/.8326 27.63/.8216 31.24/.8516
16 26.98/.7976 30.69/.8340 27.69/.8238 31.29/.8527
32 27.01/.7988 30.75/.8354 27.75/.8248 31.35/.8540
64 27.08/.8004 30.80/.8369 27.81/.8261 31.41/.8548

Table 9: Part-based mechanism results when AMRSR is trained
and evaluated with the same datasets as CIMR. NM is the number
of reference images, NI is the number of parts which the LR input
is divided into while NR is the number of parts which the reference
images are divided into.
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Ref. images Ground Truth AMRSR (ours)

SRGAN [2] ESRGAN [2] RSRGAN [14]

MAFFSRN [7] RCAN [15] CSNLN [6] MDSR [4]

SRResNet [2] RDDBNet [11] EDSR [4] CrossNet [17]

MASA [5] SSEN [8] TTSR [12] SRNTT [16]

Figure 1: Examples of SR outputs of different approaches from CU4REF dataset.



Ref. images Ground Truth AMRSR (ours)

SRGAN [2] ESRGAN [2] RSRGAN [14]

MAFFSRN [7] RCAN [15] CSNLN [6] MDSR [4]

SRResNet [2] RDDBNet [11] EDSR [4] CrossNet [17]

MASA [5] SSEN [8] TTSR [12] SRNTT [16]

Figure 2: Examples of SR outputs of different approaches from CU4REF dataset.



Ref. images Ground Truth AMRSR (ours)

SRGAN [2] ESRGAN [2] RSRGAN [14]

MAFFSRN [7] RCAN [15] CSNLN [6] MDSR [4]

SRResNet [2] RDDBNet [11] EDSR [4] CrossNet [17]

MASA [5] SSEN [8] TTSR [12] SRNTT [16]

Figure 3: Examples of SR outputs of different approaches from CU4REF dataset.



Ref. images Ground Truth AMRSR (ours)

SRGAN [2] ESRGAN [2] RSRGAN [14]

MAFFSRN [7] RCAN [15] CSNLN [6] MDSR [4]

SRResNet [2] RDDBNet [11] EDSR [4] CrossNet [17]

MASA [5] SSEN [8] TTSR [12] SRNTT [16]

Figure 4: Examples of SR outputs of different approaches from CU4REF dataset.



Ref. images Ground Truth AMRSR (ours)

SRGAN [2] ESRGAN [2] RSRGAN [14]

MAFFSRN [7] RCAN [15] CSNLN [6] MDSR [4]

SRResNet [2] RDDBNet [11] EDSR [4] CrossNet [17]

MASA [5] SSEN [8] TTSR [12] SRNTT [16]

Figure 5: Examples of SR outputs of different approaches from Sun80 dataset.



Ref. images Ground Truth AMRSR (ours)

SRGAN [2] ESRGAN [2] RSRGAN [14]

MAFFSRN [7] RCAN [15] CSNLN [6] MDSR [4]

SRResNet [2] RDDBNet [11] EDSR [4] CrossNet [17]

MASA [5] SSEN [8] TTSR [12] SRNTT [16]

Figure 6: Examples of SR outputs of different approaches from Sun80 dataset.



Ref. images Ground Truth AMRSR (ours)

SRGAN [2] ESRGAN [2] RSRGAN [14]

MAFFSRN [7] RCAN [15] CSNLN [6] MDSR [4]

SRResNet [2] RDDBNet [11] EDSR [4] CrossNet [17]

MASA [5] SSEN [8] TTSR [12] SRNTT [16]

Figure 7: Examples of SR outputs of different approaches from Sun80 dataset.



Ref. images Ground Truth MASA [5] AMRSR (ours)

SRGAN [2] ESRGAN [2] RSRGAN [14] MAFFSRN [7]

NLR [3] NHR [3] RCAN [15] CSNLN [6]

SRResNet [2] RDDBNet [11] EDSR [4] MDSR [4]

CrossNet [17] SSEN [8] TTSR [12] SRNTT [16]

Figure 8: Examples of SR outputs of different approaches from GEMAP dataset.



Ref. images Ground Truth MASA [5] AMRSR (ours)

SRGAN [2] ESRGAN [2] RSRGAN [14] MAFFSRN [7]

NLR [3] NHR [3] RCAN [15] CSNLN [6]

SRResNet [2] RDDBNet [11] EDSR [4] MDSR [4]

CrossNet [17] SSEN [8] TTSR [12] SRNTT [16]

Figure 9: Examples of SR outputs of different approaches from GEMAP dataset.



Ref. images Ground Truth MASA [5] AMRSR (ours)
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NLR [3] NHR [3] RCAN [15] CSNLN [6]

SRResNet [2] RDDBNet [11] EDSR [4] MDSR [4]

CrossNet [17] SSEN [8] TTSR [12] SRNTT [16]

Figure 10: Examples of SR outputs of different approaches from HUMAP dataset.



Ref. images Ground Truth MASA [5] AMRSR (ours)

SRGAN [2] ESRGAN [2] RSRGAN [14] MAFFSRN [7]

NLR [3] NHR [3] RCAN [15] CSNLN [6]

SRResNet [2] RDDBNet [11] EDSR [4] MDSR [4]

CrossNet [17] SSEN [8] TTSR [12] SRNTT [16]

Figure 11: Examples of SR outputs of different approaches from HUMAP dataset.



Ground Truth SRNTT [16] CIMR [1] AMRSR (ours)

Figure 12: Visual comparison between state-of-the-art single reference method (SRNTT) and the other multiple reference approach
(CIMR). The figures of these two are taken from [1].


