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This document presents additional information that supplements the main pa-

per. First, examples of some limitations of the proposed approach are illustrated

(Section 1). The architecture of the designed image feature extractor is then ex-

plained (Section 2). Di↵erent algorithms to create the low-resolution shapes from

the high-resolution ones are evaluated (Section 3). The di↵erent decimated low-

resolution shapes obtained for the ‘degradation factor’ ablation study of Section

4.2 of the main paper are illustrated (Section 4). Since the related approaches

that reconstruct 3D human shape from a single image use higher resolution im-

ages than the ones we use in the main paper, we evaluate the approaches using

higher resolution images (Section 5). In the main paper, we only show the front of

the model since we want to highlight the super-resolution e↵ect of our approach

on the shape reconstructed from the low-resolution input image. In this docu-

ment, we present examples of the back and the sides of the model. Moreover, we

show the point-to-surface error maps computed with respect to the ground-truth

shapes (Section 6). Finally, more visual results are illustrated (Section 7).

1 Limitations

As explained in the main paper, one of the limitation of SuRS is that it cannot

super-resolve parts of the human body that are not present in the input im-

age. No information about the unseen parts has been fed to the network, which

estimates a lower resolution representation of those as shown in Fig. 1 a). How-

ever, SuRS still achieves higher resolution of the unseen parts compared to other

approaches that leverage only RGB images (Section 6). This is related to the

fact that SuRS can reproduce fine details that are not clear in the input image

thanks to the learning of the map from the low to the high-resolution shape.

SuRS tries to increase also the resolution of the geometry of the unseen parts,

inferring the di↵erence learnt during training. Since the features of these parts

cannot be extracted, the resolution is still lower than that of the seen parts. As

a future work, we will try to improve the resolution of the unseen parts.

Like existing approaches, another limitation of SuRS is that it may create unnat-

ural body parts when the features of the input human body significantly di↵er

from the ones present in the training data. Fig. 1 b) shows an example of how

SuRS fails to reconstruct sunglasses. Another problem is related to depth ambi-

guity shown in Fig. 1 c). If for example the input model has naked body parts

that are di↵erent than faces and hands (like the chest or the belly), SuRS may
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a) b) c)

Fig. 1. Examples of limitations of SuRS. a) hidden body parts are not super-resolved;
b) fail to reconstruct objects not seen during training; c) depth ambiguity caused by
visibility of the chest, which is confused with the face.

mistakenly classify them as part of the face, introducing artefacts in the final

shape. This is worsen by the fact that the training data do not contain these

features since there are no human models with naked body parts in the train-

ing images. These last two problems can be solved by augmenting the training

dataset with additional models.

2 Architecture of image feature extractor

We design the image feature extractor architecture as the combination of a novel

U-Net [10] architecture and a stacked hourglass network [9]. Given an input im-

age of size NI ⇥NI , the novel U-Net part extracts features with the resolution
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Fig. 2. U-net architecture of the image feature extractor module. The low-resolution
output feature are processed by the stacked hourglass part of the feature extractor
while the high-resolution output feature are processed by a convolutional layer.
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Table 1. Quantitative comparisons between di↵erent algorithms applied to retrieve
the LR shape from its HR counterpart.

Algorithm
THuman2.0 3D people

CD Normal P2S CD Normal P2S
TwoStep [3] 0.959 0.1152 1.207 1.058 0.1232 1.273
Laplacian [13] 0.978 0.1127 1.232 1.101 0.1236 1.332
Subdivision [4] 0.964 0.1099 1.198 1.111 0.1216 1.330
Decimation [5] 0.931 0.1065 1.151 1.057 0.1127 1.247

of
NI
2 ⇥ NI

2 to maintain holistic reasoning as well as features with the higher res-

olution of 2NI ⇥ 2NI . We design the U-Net with convolution layers and residual

blocks with skip connections. Fig. 2 shows the architecture of the U-Net with

the dimensions of features for each layer. U-Net uses skip connections between

matched convolution and deconvolution layers to balance global aspects of the

frame with local ones. The local and high frequency details are preserved in the

created feature map [17]. The retrieved features are then processed by a stacked

hourglass architecture, which has been proved to be e�cient for surface recon-

struction [11]. We adapt the stacked hourglass network [9] with modifications

proposed by [7]. The low-resolution feature is processed by 3 stacks while the

high-resolution one is processed by just a convolution layer.

To train SuRS, Adam optimizer is adopted with a learning rate of 1e-4 and

the batch size has been set to 8. The training dataset has been augmented by

flipping and translating the data.

3 Shape Simplification Algorithms

We evaluate our approach by training with low-resolution shapes obtained by

applying di↵erent algorithms of simplification of the high-resolution shapes.

Namely, we apply TwoStep smoothing algorithm [3], Laplacian smoothing al-

gorithm [13], Butterfly Subdivision algorithm [4] and Quadric Edge Collapse

Decimation algorithm [5]. Fig. 3 shows an example of the low-resolution shape

obtained by applying the considered algorithm to its high-resolution counter-

part. Quantitative (Table 1) and qualitative (Fig. 4) results shows that SuRS

achieves the best performance when the Quadric Edge Collapse Decimation al-

gorithm is applied with the highest figures for all the considered metrics. If the

other algorithms are applied to create the LR shapes, noise is introduced in the

reconstructed meshes. The shapes reconstructed by training SuRS with the LR

shapes created by applying the Quadric Edge Collapse Decimation algorithm

present more natural details.

4 Factors of Decimation of High-Resolution Shape

In an ablation study of the main paper, we evaluate our approach by creating

the low-resolution ground-truth with di↵erent factors of decimation. From the

high-resolution shape with ⇠ 400k faces, we applied quadric edge collapse dec-

imation to create di↵erent low-resolution surfaces with 100k, 50k, 10k and 1k
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HR shape TwoStep [3] Laplacian [13] Subdivision [4] Decimation [5]

Fig. 3. Example of low-resolution shapes obtained by remeshing the high-resolution
shape with di↵erent algorithms.

LR input image TwoStep [3] Laplacian [13] Subdivision [4] Decimation [5]

Fig. 4. Visual comparisons between di↵erent algorithms applied to retrieve the LR
shape from its HR counterpart. The upper model is from THuman2.0, the below one
is from 3DPeople.

faces. Examples of these are shown in Fig. 5. As expected, the highest displace-

ment between the high-resolution shape and its low-resolution counterpart is

achieved when the number of faces is 1k.
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HR shape 10000 faces 50000 faces 1000000 faces 1000 (ours)

Fig. 5. Example of low-resolution shapes obtained by simplifying the high-resolution
shape with di↵erent factors of decimation.

5 Higher resolution images examples

Since the studied methods use higher resolution images in their papers, we ad-

ditionally train and test using images of higher sizes (Ni = 512, 1024). We also

train and test PIFu with 512⇥ 512 images obtained by upscaling 256⇥ 256 im-

ages by 2⇥ with an image SR network [8] (PIFu
up
). Similarly, we give as input

to PIFuHD a 1024⇥ 1024 image obtained by upscaling a 256⇥ 256 image by 4⇥
(PIFuHD

up
, PIFuHD

up
no). We evaluate another approach that do not use implicit

function but it leverages normal and displacement maps in the reconstruction

(Tex2Shape [2]). This is tested only on 1024 ⇥ 1024 images since the training

code is not available.

Qualitative evaluation: Fig. 6 illustrates the same shapes of Fig. 8 of the

Table 2. Quantitative comparisons between state-of-the-art approaches with higher
sizes (NI = 512, 1024) input image for training and testing. The highest scores are
highlighted in red while the second highest scores are blue. The red-bold figures are
the highest among all the values.

NI Methods
THuman2.0 3D people

CD Normal P2S CD Normal P2S

5
1
2

DeepHuman [16] 1.918 0.1543 2.042 1.697 0.1223 1.709
PIFu [11] 1.244 0.1299 1.365 1.391 0.1147 1.309
PIFuup 1.281 0.1395 1.382 1.476 0.1217 1.532
PIFuHDno 1.086 0.1113 1.114 1.220 0.1145 1.241
PIFuHD [12] 0.848 0.0975 0.859 0.782 0.0847 0.772
PaMIR [15] 1.712 0.1314 1.181 1.637 0.1368 1.359
Geo-PIFu [6] 1.652 0.1413 1.489 1.754 0.1611 1.652
SuRS (ours) 0.869 0.1106 1.113 0.945 0.1122 1.156

1
0
2
4

DeepHuman [16] 1.902 0.1450 1.991 1.650 0.1155 1.697
Tex2Shape [2] 1.780 0.1562 1.798 1.405 0.1490 1.372
PIFu [11] 1.185 0.1178 1.133 1.329 0.1160 1.238
PIFuHDno 0.982 0.1063 0.987 1.143 0.1113 1.173
PIFuHDup

no 1.014 0.1121 1.151 1.275 0.1113 1.284
PIFuHD [12] 0.761 0.0933 0.765 0.770 0.0806 0.769

PIFuHDup 0.939 0.1086 0.914 0.807 0.1090 0.784
PaMIR [15] 1.460 0.1296 1.412 1.219 0.1125 1.210
Geo-PIFu [6] 1.462 0.1339 1.416 1.691 0.1698 1.619
SuRS (ours) 0.791 0.1053 0.930 0.802 0.1089 1.034
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NI Input image DeepHuman [16] PIFu [11] PIFu
up

PIFuHDno PIFuHD [12] PaMIR [15] Geo-PIFu [6] SuRS (ours)

5

1

2

DeepHuman [16] Tex2Shape [2] PIFu [11] PIFuHDno PIFuHD
up

no
PIFuHD [12] PIFuHD

up
PaMIR [15] Geo-PIFu [6] SuRS (ours)

1

0

2

4

Input image DeepHuman [16] PIFu [11] PIFu
up

PIFuHDno PIFuHD [12] PaMIR [15] Geo-PIFu [6] SuRS (ours)

5

1

2

DeepHuman [16] Tex2Shape [2] PIFu [11] PIFuHDno PIFuHD
up

no
PIFuHD [12] PIFuHD

up
PaMIR [15] Geo-PIFu [6] SuRS (ours)

1

0

2

4

Fig. 6. Visual comparisons using higher sizes of the input image for training and test-
ing. The upper model is from THuman2.0, the below one is from 3DPeople.

main paper reconstructed from higher size images. When the input image is

512 ⇥ 512, the shapes reconstructed by SuRS contain the highest level of fine

detail. When the related works are trained and tested with HR 1024 ⇥ 1024

images, our approach with LR 256⇥ 256 and 512⇥ 512 images can reconstruct

surfaces with similar level of details as PIFuHD even if the resolution of the

image is 4⇥ lower and no auxiliary data is leveraged. PIFuHD and Geo-PIFu are

the only related approaches that can achieve similar resolution as SuRS in the

reconstructed shape with 1024 ⇥ 1024 input images. When the input image is

upsampled from 256 to 1024 and processed by PIFuHD, its reconstructed shape

contains blurrier details than SuRS.

Quantitative evaluation: In the case of higher resolution images, SuRS out-

performs all the methods that leverage only RGB images in training and testing

(Table 2). If all the approaches are considered, our method is second to only

PIFuHD with normal maps, which obtain the highest figures when is trained



Super-resolution 3D Human Shape from a Single Low-Resolution Image 7

and tested with 1024⇥ 1024 images and normal maps. This is expected since it

uses back normal maps to leverage information of unseen parts of the shape.

6 Back of the models and error maps

In the main paper, we present only the part of the 3D human body that is

depicted in the input image in order to highlight the super-resolution e↵ect

of SuRS. We now show the back of the 3D models and the point-to-surface

error maps between the reconstructed shapes and the ground-truth for all the

evaluation studies (both ablation and comparisons) presented in the paper. Fig. 7

shows the back of the 3D models obtained by changing the training configuration

of SuRS while Fig. 8 illustrates the point-to-surface error maps. Fig. 9 depicts the

back of the 3D models obtained by changing the decimation factor. Fig. 10 shows

the point-to-surface error maps for this study. The back of the human shapes

obtained by changing the architecture of SuRS are shown in Fig. 11 while their

point-to-surface error maps are in Fig. 12. Fig. 13 illustrates examples of the

back of the 3D models presented in the comparisons section of the main paper

and in Section 5 of the supplementary while Fig. 14 shows the point-to-surface

error maps for all the tested approaches. As explained in 1, SuRS does not super-

resolve unseen parts of the human body but it is still able to retrieve a coarse

representation without introducing significant artefacts. The only approaches

that reproduce detail in the unseen parts are PIFuHD [12] and Geo-PIFu [6]:

the former leverages normal maps of the back and the front of the human subject

while the latter uses parametric models to reconstruct unseen parts.

When the colour of the error maps is blue, the Euclidean distance between a

sampled point of the reconstructed surface and the ground-truth shape is close

to 0 while the red points are the ones with the highest distance.

Fig. 15 illustrates the back of the shapes obtained with real data. In this case

the error map cannot be computed because the ground-truth is missing.

Fig. 16 shows the sides of the 3D models reconstructed from synthetic images

by SuRS and presented in the main paper while Fig. 17 illustrates the sides of

the 3D models of Fig. 9 of the main paper reconstructed from real images.

7 Additional visual results

We present additional visual results of the ‘comparisons’ study with examples

taken from THuman2.0 [14] (Fig. 18) and 3Dpeople [1] (Fig. 19) datasets. These

examples demonstrate the e�ciency of SuRS with di↵erent poses of the human

subject as well as with various clothes. We finally train and test SuRS with

128x128 images to show that as the LR input image resolution decreases, the

super-resolved shape detail from SuRS will decrease due to the absence of visible

details (Fig. 20).
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Ground-Truth 1 2 3 4 (ours)

Fig. 7. Back of the models of Fig. 5 of the main paper obtained by changing the
configuration of training.

Ground-Truth 1 2 3 4 (ours)

Fig. 8. Point-to-surface error maps of the models of Fig. 5 of the main paper obtained
by changing the configuration of training.
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Ground-Truth 10000 faces 50000 faces 1000000 faces 1000 faces (ours)

Fig. 9. Back of the models of Fig. 6 of the main paper obtained by using di↵erent
decimation factors to create the LR ground-truth shape.

Ground-Truth 10000 faces 50000 faces 1000000 faces 1000 faces (ours)

Fig. 10. Point-to-surface error map of the models of Fig. 6 of the main paper obtained
by using di↵erent decimation factors to create the LR ground-truth shape.
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Ground-Truth W/o U �Net Only MR-MLP Only SR-MLP W/o Ldisp SuRS (ours)

Fig. 11. Back of the models of Fig. 7 of the main paper obtained by changing the
architecture of our approach.

Ground-Truth W/o U �Net Only MR-MLP Only SR-MLP W/o Ldisp SuRS (ours)

Fig. 12. Point-to-surface error maps of the models of Fig. 7 of the main paper obtained
by changing the architecture of our approach.
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NI Ground-Truth DeepHuman [16] PIFu [11] PIFuHDno PIFuHD [12] PaMIR [15] Geo-PIFu [6] SuRS (ours)

2
5
6

DeepHuman [16] PIFu [11] PIFuup PIFuHDno PIFuHD [12] PaMIR [15] Geo-PIFu [6] SuRS (ours)

5
1
2

DeepHuman [16] Tex2Shape [2] PIFu [11] PIFuHDno PIFuHDup
no PIFuHD [12] PIFuHDup PaMIR [15] Geo-PIFu [6] SuRS (ours)

1
0
2
4

Ground-Truth DeepHuman [16] PIFu [11] PIFuHDno PIFuHD [12] PaMIR [15] Geo-PIFu [6] SuRS (ours)

2
5
6

DeepHuman [16] PIFu [11] PIFuup PIFuHDno PIFuHD [12] PaMIR [15] Geo-PIFu [6] SuRS (ours)

5
1
2

DeepHuman [16] Tex2Shape [2] PIFu [11] PIFuHDno PIFuHDup
no PIFuHD [12] PIFuHDup PaMIR [15] Geo-PIFu [6] SuRS (ours)

1
0
2
4

Fig. 13. Back of the models of Fig. 8 of the main paper and of Fig. 6 of the supplemen-
tary. The ‘no’ subscript means that normal maps are not used. The ‘up’ superscript
means that the input image is upscaled from 256 to 1024.
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NI Ground-Truth DeepHuman [16] PIFu [11] PIFuHDno PIFuHD [12] PaMIR [15] Geo-PIFu [6] SuRS (ours)

2
5
6

DeepHuman [16] PIFu [11] PIFuup PIFuHDno PIFuHD [12] PaMIR [15] Geo-PIFu [6] SuRS (ours)

5
1
2

DeepHuman [16] Tex2Shape [2] PIFu [11] PIFuHDno PIFuHDup
no PIFuHD [12] PIFuHDup PaMIR [15] Geo-PIFu [6] SuRS (ours)

1
0
2
4

Ground-Truth DeepHuman [16] PIFu [11] PIFuHDno PIFuHD [12] PaMIR [15] Geo-PIFu [6] SuRS (ours)

2
5
6

DeepHuman [16] PIFu [11] PIFuup PIFuHDno PIFuHD [12] PaMIR [15] Geo-PIFu [6] SuRS (ours)

5
1
2

DeepHuman [16] Tex2Shape [2] PIFu [11] PIFuHDno PIFuHDup
no PIFuHD [12] PIFuHDup PaMIR [15] Geo-PIFu [6] SuRS (ours)

1
0
2
4

Fig. 14. Point-to-surface error maps between the models of Fig. 8 of the main paper
and of Fig. 6 of the supplementary and the ground-truth shape. The ‘no’ subscript
means that normal maps are not used. The ‘up’ superscript means that the input
image is upscaled from 256 to 1024.
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HR image LR patch PiFu[11] PIFuHDno[12] SuRS (ours)

Fig. 15. Back of the models of Fig. 9 of the main paper.
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THuman2.0 3DPeople

Fig. 16. Sides of the 3D models reconstructed from synthetic images presented in the
main paper and reconstructed by SuRS.

Fig. 17. Sides of the 3D models reconstructed from real images presented in the main
paper and reconstructed by SuRS.
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NI Input image DeepHuman [16] PIFu [11] PIFuHDno PIFuHD [12] PaMIR [15] Geo-PIFu [6] SuRS (ours)

2
5
6

DeepHuman [16] PIFu [11] PIFuup PIFuHDno PIFuHD [12] PaMIR [15] Geo-PIFu [6] SuRS (ours)

5
1
2

DeepHuman [16] Tex2Shape [2] PIFu [11] PIFuHDno PIFuHDup
no PIFuHD [12] PIFuHDup PaMIR [15] Geo-PIFu [6] SuRS (ours)

1
0
2
4

Input image DeepHuman [16] PIFu [11] PIFuHDno PIFuHD [12] PaMIR [15] Geo-PIFu [6] SuRS (ours)

2
5
6

DeepHuman [16] PIFu [11] PIFuup PIFuHDno PIFuHD [12] PaMIR [15] Geo-PIFu [6] SuRS (ours)

5
1
2

DeepHuman [16] Tex2Shape [2] PIFu [11] PIFuHDno PIFuHDup
no PIFuHD [12] PIFuHDup PaMIR [15] Geo-PIFu [6] SuRS (ours)

1
0
2
4

Fig. 18. Visual comparisons using di↵erent sizes of the input image for training and
testing from THuman2.0 dataset. The ‘no’ subscript means that normal maps are not
used. The ‘up’ superscript means that the input image is upscaled from 256 to 1024.
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NI Input image DeepHuman [16] PIFu [11] PIFuHDno PIFuHD [12] PaMIR [15] Geo-PIFu [6] SuRS (ours)

2
5
6

DeepHuman [16] PIFu [11] PIFuup PIFuHDno PIFuHD [12] PaMIR [15] Geo-PIFu [6] SuRS (ours)

5
1
2

DeepHuman [16] Tex2Shape [2] PIFu [11] PIFuHDno PIFuHDup
no PIFuHD [12] PIFuHDup PaMIR [15] Geo-PIFu [6] SuRS (ours)

1
0
2
4

Input image DeepHuman [16] PIFu [11] PIFuHDno PIFuHD [12] PaMIR [15] Geo-PIFu [6] SuRS (ours)

2
5
6

DeepHuman [16] PIFu [11] PIFuup PIFuHDno PIFuHD [12] PaMIR [15] Geo-PIFu [6] SuRS (ours)

5
1
2

DeepHuman [16] Tex2Shape [2] PIFu [11] PIFuHDno PIFuHDup
no PIFuHD [12] PIFuHDup PaMIR [15] Geo-PIFu [6] SuRS (ours)

1
0
2
4

Fig. 19. Visual comparisons using di↵erent sizes of the input image for training and
testing from 3DPeople dataset. The ‘no’ subscript means that normal maps are not
used. The ‘up’ superscript means that the input image is upscaled from 256 to 1024.
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THuman 2.0 3D people

CD Normal P2S CD Normal P2S
1.235 0.1227 1.492 1.294 0.1239 1.546

Fig. 20. SuRS trained and tested with 128x128 images.
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